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Outline of Talk
• Experimental setup of IIAX (Ion-surface

Interaction Experiment)
• Lithium erosion studies in IIAX.
• Experimental results for liquid lithium and 

liquid tin lithium
• Temperature dependence of the Li sputtering 

yield from lithium and tin-lithium surfaces
• Key issues and mechanisms
• Conclusions and Future Work
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Colutron ion source for both
Gaseous and metal species:
H+, D+, He+,  and Li+

QCO (Quartz crystal oscillator
Microbalance dual unit, ± 0.1 Å)

Erosion measurements on static 
liquid metals

Γ+
D = 1017 ions/cm2/sec, flux from 

hollow cathode source
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Decelerator and Neutral Filter

Target

Ion Beam

Γion beam ≥ 1014 ions/cm2/sec

100 eV ≤ Eo≤ 1000 eV
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Evaporation Shield for Liquid Metal 
Sputtering Measurements

• Evaporation rate for Li at 200 °C:
� calculated:  4 x 1011 /cm2/sec
� measured: 5.1 x 1011 /cm2 /sec

• Evaporation rate for 0.8 Sn-Li at 380 °C:
� calculated:  5 x 1012 /cm2/sec
� measured: 2 x 1012 /cm2 /sec

• Sputtering rate for 50 nA beam, Y=0.1, on a  spot size 
of 0.32 mm by 0.32 mm: 8 x 1013 /cm2/sec

• To eliminate evaporation from regions not being 
struck by the ion beam, a thin tantalum metal sheet 
with a small hole is floated on top of the liquid Li  or 
liquid 0.8 Sn-Li surface as an evaporation shield.
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In-situ cleaving arm design and 
HV heater• Cleaving arm is 

designed to remove 
thin oxide layer 
formed on Li layer of 
liquid tin-lithium or 
liquid lithium sample

• Surface composition 
experiments show 
that Li segregates to 
the liquid Sn-Li
surface1 A HV heater was installed inside

a BN cup.

TC

QCM-DCU

Plasma cup

1. R. Bastasz and W. Eckstein, J. Nucl. Mater. 290-293 (2001) 19-24
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He+ on D-saturated and non D-sat.
lithium at 45° incidence
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D-treatment effect on lithium sputtering
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IIAX experimental and modeling data 
on liquid lithium erosion

• D-treated
lithium yields 
are well below 
unity

• Data taken at 
45 deg. 
Incidence and 
200 °C surface 
temperature

J.P. Allain, M.R. Hendricks and D.N. Ruzic, J. Nucl. Mater. 290-293 (2001) 180
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D+, He+ and  Li+ bombardment of  liquid tin-
lithium data and VFTRIM-3D simulation at 45-

degree incidence.( J.P. Allain, M.R. Hendricks, D.N. Ruzic, J.Nucl.Mater. 290-293 (2001) 33-37)
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Secondary ion fraction and deuterium-
saturation studies of liquid metals in 

IIAX at UIUC
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• Saturation of solid and liquid (T/Tm ~ 1) tin-lithium with D atoms 
results in no effect on the absolute sputtering yield of lithium.

• Ion fraction measurements show that 55-65% of sputtered atoms 
from D-saturated solid and liquid lithium are in an ionized state.
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Secondary Ion Fraction of sputtered 
Li as a function of surface
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Lithium sputtering yield temperature 
dependence for lithium and tin-lithium targets
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VFTRIM-3D Model for temperature 
dependence in IIAX liquid lithium 

sputtering data
• Initially began with surface model for D-treated liquid 

lithium (presented earlier) at 200 C.
• Deuterium surface concentration varied as T/Tm

increases with mechanism for channeling energy from 
subsurface layers to the top surface layer.

• Surface binding energy calibrated to mean ejected 
energy of sputtered lithium atoms measured in PISCES-
B.  Assuming Thompson distribution with sbe ~ <Esp>/ 2.
(R.P. Doerner, et al. J. Nucl. Mater. 290-293 (2001) 166-172.)

• Density of liquid lithium layer calibrated to experimental 
data of temperature dependent density (~ weak T 
function) (T. Iida and R.I.L. Guthrie, “The Physical Properties of Liquid 
Metals”, Oxford, 1988)
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VFTRIM-3D Simulation for He+ on D-sat.
liquid Li as a function of target temperature 

with IIAX data
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Lithium surface concentration of D-treated
liquid lithium surfaces as a function of 

surface temperature

200 250 300 350 400 450
10-1

100

A
bs

ol
ut

e 
S

pu
tte

rin
g 

Y
ie

ld
 o

f L
i (

at
om

s/
io

n)

Liquid Li sample temperature (oC)

 IIAX Data, He on liquid Li
          700 eV, 45o incidence

 VFTRIM-3D He on liquid Li

10-1

100

 Li surface concentration

 S
urface Li C

oncentration (atom
ic %

)



Plasma-material Interaction Group University of Illinois, Urbana-Champaign

Model to determine deuterium surface 
concentration as a function of time for a 

particular temperature

R. Bastasz and W. Eckstein, J. Nucl. Mater. 290-293 (2001) 19-24
R. Kirchheim and S. Hoffmann, Surf. Sci. 83 (1979) 296-300

Coverage of deuterium atoms on liquid lithium
is obtained accounting for all gain and loss
mechanisms
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Kirchheim-Hoffmann Surface Model
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Lithium sputtering yield temperature 
dependence for lithium and tin-lithium targets
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Partial lithium sputtering yield vs segregated
lithium layer thickness in 0.8 Sn-Li

0 2 4 6 8 10

10-1

100
Li

th
iu

m
 S

pu
tte

rin
g 

Y
ie

ld
 (

a.
u.

)

Li segregated layer thickness (Angstroms)

 VFTRIM-3D Li on liquid 0.8 Sn-Li
 VFTRIM-3D He on liquid 0.8 Sn-Li
 IIAX data of He+ on liquid 0.8 Sn-Li



Plasma-material Interaction Group University of Illinois, Urbana-Champaign

Segregated lithium layer thickness as a 
function of liquid 0.8 Sn-Li temperature
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Partial sputtering yields of lithium and tin 
from He bombardment as a function of 

segregated lithium layer
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QCM Frequency dependence on 
Liquid 0.8 Sn-Li sample temperature
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SEM micrographs of macroscopic 
erosion in IIAX

Large particulate ~ 6-7 µm is shown with crater
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EDS (X-ray energy dispersive spectroscopy)
confirmed that particulates are made of tin

Need to run XPS to determine amount of lithium in particulates
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Secondary ion sputtering fraction (Y+
sp)

dependence on target temperature for Liquid 
0.8 Sn-Li
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Liquid lithium and tin-lithium dependence 
on temperature at low incident flux

• Low flux (~ 1014 ion/cm2/sec) not expected to result in 
dramatic enhanced erosion for temperatures near T/Tm ~ 1.0.
(P. Sigmund and M. Szymonski, Appl. Phys. A 33 (1984) 141-152)

• Erosion enhancement is a result of combined mechanisms: 
local enhanced evaporation (net decrease in ejected sputtered 
energy), segregation, diffusion and possible bubble formation

• Key: liquid surface stratification…strong temperature 
dependence?

• Other key: understand transition from microscopic to 
macroscopic erosion (static vs dynamic liquid metal surfaces)

• Finally: Identify conditioning techniques that can address 
enhanced erosion, i.e. can Y+

sp increase, surface treatment 
(deuterium, etc…)
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Important mechanisms to consider in 
liquid metal sputtering (not exclusive)

Surface Stratification
S.A. Rice, P. Pershan, W.P. Morgan

Self-consistent model which addresses most of these mechanisms
HEIGHTS, A. Hassanein (Argonne National Laboratory)

Damage Distribution Theory: Gibbsian segregation,
Radiation-enhanced diffusion, preferential sputtering
P. Sigmund, N. Lam, R. Kelly, A.R. Krauss, D.M. Gruen, J. Bohdansky, W. Eckstein, etc

Thermal Sputtering: local enhanced 
liquid-metal evaporation
R. Kelly, M.W. Nelson, R.S. Nelson, P. Sigmund

Bubble formation in liquid
metals
L.B. Begrambekov, A. Hassanein
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Temporal and spatial scales relevant to 
liquid-metal sputtering

• Temporal Scales
� Diffusion, segregation processes
� Local temperature rise of impacted lattice region
� Preferential sputtering
� Desorption and recombination rates
� Thermal spike and bubble formation

• Spatial Scales
� Depth of origin of sputtered atoms
� Depletion surface region
� Range of ions
� Thermal spike radius
� Stratified layer thickness
� Short-range order of liquid metal
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FLIRE (Flowing Liquid Surface 
Illinois Retention Experiment)

• FLIRE will provide 
fundamental data on 
the retention and 
pumping of He, H, 
and other gases in 
flowing liquid 
surfaces.
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FLIRE concept
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Conclusions
• Solid and liquid lithium sputtering yields measured in 

IIAX-UIUC show less-than unity self-sputtering yields.
• Measurements of liquid eutectic tin-lithium sputtering 

yields are larger than both measured solid and liquid 
pure lithium sputtering yields in IIAX.

• Ion fraction of sputtered species for liquid lithium and 
liquid tin-lithium are 55%-65% compared to <10% for
solid phase tin-lithium.

• Deuteration of lithium surface results in a ~ 60% 
decrease in absolute sputtering yield of lithium.
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Conclusions (cont.)
• Bombardment of liquid lithium and liquid tin-

lithium show dramatic increase in absolute 
sputtering yield as temperature is increased.

• Sputtered ion fraction shows modest increase 
with sample temperature

• New models need to account for surface 
stratification and its effect on physical 
sputtering of candidate liquid metals



Plasma-material Interaction Group University of Illinois, Urbana-Champaign

Future Work Plan
• Experiments to understand temperature 

dependence of physical sputtering yield
� Saturation and pre-treatment effects
� Understand: desorption, segregation and 

diffusion mechanisms
� Thermal spikes
� Search for bubble burst events

• Ion-induced secondary electron yields
• Study other candidate materials (i.e. Sn)
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